ORGANIZATION OF KIDS EDUCATION Solusi Untuk Prestasi Buah Hati..! Hp/WA: +62 896 5219 2502 PIN BBM:596AA8AA / 5BA4F51F

Wednesday, February 19, 2014

Kromatografi

Walaupun agak tidak terlalu jelas, kontribusi kromatografi pada perkembangan kimia modern tidak dapat dipandang rendah. Tanpa teknik kromatografi, sintesis senyawa murni (atau hampir murni) akan sangat sukar , dan dalam banyak kasus, hampir tidak mungkin.
Di awal abad ke-20, kimiawan Rusia Mikhail Semënovich Tsvet (1872-1919) menyiapkan kolom yang diisi dengan serbuk kalsium karbonat, dan kedalamnya dituangkan campuran pigmen tanaman yang dilarutkan dalam eter. Secara mengejutkan, pigmen memisahkan dan membentuk lapisan berwarna di sepanjang kolom. Ia menamakan kromatografi pada teknik pemisahan baru ini (1906). Kemudian kimiawan dari Swiss Richard Martin Willstätter (1872-1942) menerapkan teknik ini untuk risetnya yakni khlorofil untuk menunjukkan manfaat teknik ini, dan sejak itu banyak perhatian diberikan pada kromatografi.
Kromatografi adalah teknik untuk memisahkan campuran menjadi komponennya dengan bantuan perbedaan sifat fisik masing-masing komponen. Alat yang digunakan terdiri atas kolom yang di dalamnya diisikan fasa stasioner (padatan atau cairan). Campuran ditambahkan ke kolom dari ujung satu dan campuran akan bergerak dengan bantuan pengemban yang cocok (fasa mobil). Pemisahan dicapai oleh perbedaan laju turun masing-masing komponen dalam kolom, yang ditentukan oleh kekuatan adsorpsi atau koefisien partisi antara fasa mobil dan fasa diam (stationer).
Komponen utama kromatografi adalah fasa stationer dan fasa mobil dan kromatografi dibagi menjadi beberapa jenis bergantung pada jenis fasa mobil dan mekanisme pemisahannya, seperti ditunjukkan di Tabel 12.1
Tabel 12.1 Klasifikasi kromatografi
KriteriaNama
Fasa mobilKromatografi cair, kromatografi gas
Kromatografi adsorpsi, kromatografi partisi
MekanismeKromatografi pertukaran ion
kromatografi gel
Fasa stationerKromatografi kolom, kromatografi lapis tipis,
kromatografi kertas
Beberapa contoh kromatografi yang sering digunakan di laboratorium diberikan di bawah ini.

a. Kromatografi partisi

Prinsip kromatografi partisi dapat dijelaskan dengan hukum partisi yang dapat diterapkan pada sistem multikomponen yang dibahas di bagian sebelumnya. Dalam kromatografi partisi, ekstraksi terjadi berulang dalam satu kali proses. Dalam percobaan, zat terlarut didistribusikan antara fasa stationer dan fasa mobil. Fasa stationer dalam banyak kasus pelarut diadsorbsi pada adsorben dan fasa mobil adalah molekul pelarut yang mengisi ruang antar partikel yang ter adsorbsi.
Contoh khas kromatografi partisi adalah kromatografi kolom yang digunakan luas karena merupakan sangat efisien untuk pemisahan senyawa organik (Gambar 12.3).
Kolomnya (tabung gela) diisi dengan bahan seperti alumina, silika gel atau pati yang dicampur dengan adsorben, dan pastanya diisikan kedalam kolom. Larutan sampel kemudian diisikan kedalam kolom dari atas sehingga sammpel diasorbsi oleh adsorben. Kemudian pelarut (fasa mobil; pembawa) ditambahkan tetes demi tetes dari atas kolom.
Partisi zat terlarut berlangsung di pelarut yang turun ke bawah (fasa mobil) dan pelarut yang teradsorbsi oleh adsorben (fasa stationer). Selama perjalanan turun, zat terlarut akan mengalami proses adsorpsi dan partisi berulang-ulang. Laju penurunan berbeda untuk masing-masing zat terlarut dan bergantung pada koefisien partisi masing-masing zat terlarut. Akhirnya, zat terlarut akan terpisahkan membentuk beberapa lapisan.
Akhirnya, masing-masing lapisan dielusi dengan pelarut yang cocok untuk memberikan spesimen murninya. Nilai R didefinisikan untuk tiap zat etralrut dengan persamaan berikut.
R = (jarak yang ditempuh zat terlarut) / (jarak yang ditempuh pelarut/fasa mobil).

Gambar 12.3 Diagram skematik kromatografi

b. Kromatografi kertas

Mekanisme pemisahan dengan kromatografi kertas prinsipnya sama dengan mekanisme pada kromatografi kolom. Adsorben dalam kromatografi kertas adalah kertas saring, yakni selulosa. Sampel yang akan dianalisis ditotolkan ke ujung kertas yang kemudian digantung dalam wadah. Kemudian dasar kertas saring dicelupkan kedalam pelarut yang mengisi dasar wadah. Fasa mobil (pelarut) dapat saja beragam. Air, etanol, asam asetat atau campuran zat-zat ini dapat digunakan.
Kromatografi kertas diterapkan untuk analisis campuran asam amino dengan sukses besar. Karena asam amino memiliki sifat yang sangat mirip, dan asam-asam amino larut dalam air dan tidak mudah menguap (tidak mungkin didistilasi), pemisahan asam amino adalah masalah paling sukar yang dihadapi kimiawan di akhir abad 19 dan awal abad 20. Jadi penemuan kromatografi kertas merupakan berita sangat baik bagi mereka.
Kimiawan Inggris Richard Laurence Millington Synge (1914-1994) adalah orang pertama yang menggunakan metoda analisis asam amino dengan kromatografi kertas. Saat campuran asam amino menaiki lembaran kertas secara vertikal karena ada fenomena kapiler, partisi asam amino antara fasa mobil dan fasa diam (air) yang teradsorbsi pada selulosa berlangsung berulang-ulang. Ketiak pelarut mencapai ujung atas kertas proses dihentikan. Setiap asam amino bergerak dari titik awal sepanjang jarak tertentu. Dari nilai R, masing-masing asam amino diidentifikasi.
Kromatografi kertas dua-dimensi (2D) menggunakan kertas yang luas bukan lembaran kecil, dan sampelnya diproses secara dua dimensi dengan dua pelarut.

Gambar 12.4 Contoh hasil kromatografi kertas pigmen dari
www.indigo.com/ science-supplies/filterpaper. html

c. Kromatografi gas

Campuran gas dapat dipisahkan dengan kromatografi gas. Fasa stationer dapat berupa padatan (kromatografi gas-padat) atau cairan (kromatografi gas-cair).
Umumnya, untuk kromatografi gas-padat, sejumlah kecil padatan inert misalnya karbon teraktivasi, alumina teraktivasi, silika gel atau saringan molekular diisikan ke dalam tabung logam gulung yang panjang (2-10 m) dan tipis. Fasa mobil adalah gas semacam hidrogen, nitrogen atau argon dan disebut gas pembawa. Pemisahan gas bertitik didih rendah seperti oksigen, karbon monoksida dan karbon dioksida dimungkinkan dengan teknik ini.
Dalam kasus kromatografi gas-cair, ester seperti ftalil dodesilsulfat yang diadsorbsi di permukaan alumina teraktivasi, silika gel atau penyaring molekular, digunakan sebagai fasa diam dan diisikan ke dalam kolom. Campuran senyawa yang mudah menguap dicampur dengan gas pembawa disuntikkan ke dalam kolom, dan setiap senyawa akan dipartisi antara fasa gas (mobil) dan fasa cair (diam) mengikuti hukum partisi. Senyawa yang kurang larut dalam fasa diam akan keluar lebih dahulu.
Metoda ini khususnya sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan ester. Analisis minyak mentah dan minyak atsiri dalam buah telah dengan sukses dilakukan dengan teknik ini.
Efisiensi pemisahan ditentukan dengan besarnya interaksi antara sampel dan cairannya. Disarankan untuk mencoba fasa cair standar yang diketahui efektif untuk berbagai senyawa. Berdasarkan hasil ini, cairan yang lebih khusus kemudian dapat dipilih. Metoda deteksinya, akan mempengaruhi kesensitifan teknik ini. Metoda yang dipilih akan bergantung apakah tujuannya analisik atau preparatif.

d. HPLC

Akhir-akhir ini, untuk pemurnian (misalnya untuk keperluan sintesis) senyawa organik skala besar, HPLC (high precision liquid chromatography atau high performance liquid chromatography) secara ekstensif digunakan. Bi la zat melarut dengan pelarut yang cocok, zat tersebut dapat dianalisis. Ciri teknik ini adalah penggunaan tekanan tinggi untuk mengirim fasa mobil kedalam kolom. Dengan memberikan tekanan tinggi, laju dan efisiensi pemisahan dapat ditingkatkan dengan besar.
Silika gel atau oktadesilsilan yang terikat pada silika gel digunakan sebagai fasa stationer. Fasa stationer cair tidak populer. Kolom yang digunakan untuk HPLC lebih pendek daripada kolom yang digunakan untuk kromatografi gas. Sebagian besar kolom lebih pendek dari 1 m.
Kromatografi penukar ion menggunakan bahan penukar ion sebagai fasa diam dan telah berhasil digunakan untuk analisis kation, anion dan ion organik.

Latihan

12.1 Distilasi fraktional
Tekanan uap dua cairan A dan B adalah 1,50 x 104 N m-2 dan 3,50 x 104 N m-2 pada 20°C. dengan menganggap campuran A dan B mengikuti hukum Raoult, hitung fraksi mol A bila tekanan uap total adalah 2,90 x 104 N m-2 pada 20°C.
12.1 Jawab
Fraksi mol A, nA, dinyatakan dengan.
(nA x 1,50 x 104) + (1 – nA) x 3,50 x 104 = 2,90 x 104 ∴ nA = 0,30
Share:

0 komentar:

Post a Comment

Selamat Datang Di Lembaga Bimbingan Belajar OKE (ORGANIZATION OF KIDS EDUCATION)... Prestasi Buah Hati Anda,Kami Solusinya ... Selamat Datang Di Lembaga Bimbingan Belajar OKE (ORGANIZATION OF KIDS EDUCATION)... Prestasi Buah Hati Anda,Kami Solusinya ....

Selamat Datang Anda Pengunjung Ke

Blog Archive

Lembaga Bimbingan Belajar OKE. Powered by Blogger.

Blog Archive

Theme Support